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Abstract

Agapornis are a group of small African parrots that are heavily traded around the world. They are invasive species in many
places, but some of them are listed as Vulnerable or Near Threatened. However, the genetic tools for assessing inter-individual
relationships, population structure, and genetic diversity of these birds are very limited. Therefore, we developed polymor-
phic microsatellite markers in A. roseicollis and tested the transferability on 5 lovebird species including A. personatus,
A. nigrigenis, A. fischeri, A. pullarius, and A. canus, and two closely related outgroups (i.e. Bolbopsittacus lunulatus and
Loriculus galgulus). We first performed whole-genome re-sequencing on five individuals of A. roseicollis to identify potential
polymorphic loci. Out of 37 loci tested in 11 A. roseicollis, 27 loci were demonstrated to be polymorphic, with the number
of the alleles ranging from 2 to 7 (mean=3.963). The observed heterozygosity ranged from 0 to 0.875 (mean=0.481) and
expected heterozygosity ranged from 0.233 to 0.842 (mean=0.642). Five loci (Agro-Al3, p<0.01; Agro-Al5, p < 0.05;
Agro-A43, p < 0.05, Agro-A65, p<0.05; Agro-A67, p <0.05) were detected to deviate from Hardy-Weinberg equilibrium,
with the presence of null alleles suggested in locus Agro-A13 and Agro-A77. The exclusion powers for PE1 and PE2 are
0.997 and 0.999, respectively. The 27 novel polymorphic markers developed here will be useful for parentage and kinship
assignment and population genetics study in Agapornis, and provide a tool for scientific research, captive breeding industry,
and invasion and conservation management of these species.

Keywords Agapornis roseicollis - High throughput sequencing - Kinship inference - Parentage analysis - Peach-faced
lovebirds - Polymorphic microsatellite loci

Introduction to small body size and colorful plumage, they are very popu-

lar as companion pets, and thus being traded heavily around

The genus Agapornis (lovebirds) is a group of small Afri-
can parrots, including A. personatus, A. nigrigenis, A. lili-
anae, A. fischeri, A. roseicollis, A. pullarius, A. taranta, A.
canus, and A. swindernianus (Online Resource 1; [1]). Due
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the world each year [2, 3]. Although sources from captive
breeding dominates lovebird trades, the wild populations
of six lovebird species (i.e. A. nigrigenis, A. lilianae, A. fis-
cheri, A. roseicollis, A. pullarius, and A. swindernianus)
were suspected to be declining, likely due to illegal bird
trades, hunting, habitat loss, etc. [4]. Besides, out of the
nine lovebird species, A. lilianae and A. fischeri are listed
as Near Threatened and A. nigrigenis is listed as Vulnerable
[4]. Conservation measures such as captive breeding and
ex-situ conservation program have been proposed to sus-
tain these species in the wild in order to prevent them from
population decline. Knowledge of population structure and
genetic diversity is thus critical for designing conservation
strategies. However, there is a lack of population genetic
study on any of the above species.
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Besides, with the large trade volume, some lovebirds
became introduced species with wide-ranged distributions
worldwide [2]. Occurrences of non-native lovebird popula-
tions have been reported in African, Europe, Australia, and
Northern America, with A. fischeri and A. roseicollis having
the highest abundance [2]. Since they feed on seeds, leaves,
fruits, and some cultivated plants, they could be agricul-
tural pests [5—7], such as the introduced A. personatus in
Kenya [6]. Also, lovebirds are famous for their destructive
behaviors. They could cause potential damages to human
infrastructures and native fauna [7, 8]. Breeding site com-
petitions have also been suggested between A. fischeri and
Passer domesticus in France [8] as well as A. personatus and
Cypsiurus parvus in Kenya [9]. Despite all of these possi-
ble threats to native fauna, the knowledge on their invasion
histories, dispersal patterns and invasion assessments are
under-investigated [2]. In addition, in the captive breeding
industry, lovebird breeders usually rely on pedigree to iden-
tify kinship and parentage to breed for commercially valu-
able color mutants [10]. However, this approach has many
limitations and is not always reliable.

Regarding the above issues, there is a demand to develop
an easily accessible genetic tool to investigate inter-indi-
vidual relationships and population genetics of Agapornis
spp. Microsatellite markers are commonly employed for
these purposes. In this study, we therefore aimed to develop
polymorphic microsatellite markers in A. roseicollis first
as its draft genome is available [11]. We performed whole-
genome re-sequencing on five individuals of A. roseicollis
to screen for potential polymorphic microsatellite loci. We
then tested the transferability of the characterized markers
on five other Agapornis species (i.e. including A. personatus,
A. nigrigenis, A. fischeri, A. pullarius, and A. canus) and two
closely related outgroups (i.e. Bolbopsittacus lunulatus and
Loriculus galgulus). The novel polymorphic microsatellite
markers developed here are not only useful for the lovebird
breeding industry but also for conservation planning, inva-
sion management, and scientific research.

Methods

Agapornis blood and tissue samples were collected from
local breeders and museums, respectively (Online Resource
2). Blood samples were stored in Queen’s lysis buffer
(0.01 M Tris, 0.01 M sodium-EDTA, 1.0% n-lauroylsar-
cosine, 0.01 NaCl, pH 8.0) until DNA extraction. We per-
formed whole-genome re-sequencing on 5 individuals of A.
roseicollis. The DNA was extracted using the DNeasy Blood
& Tissue Kit (Qiagen, Germany). The extracted DNA was
sheared to targeted size using Covaris S220. We used the
PrepX Complete ILMN 32i DNA Library Kit (TaKaRa, US)
to prepare the 220 bp fragment libraries. The libraries were

@ Springer

quantified using the Qubit dsDNA HS Assay Kit (Invitrogen,
US), and then multiplexed in equamolar ratio for sequencing
using the Illumina HiSeq 2500 instrument. Low coverage
sequencing (~5X) was performed.

Primers for potential polymorphic microsatellite loci
were designed based on the draft genome of A. roseicollis
(GenBank: NDXB00000000.1) and the whole-genome re-
sequencing data (Sin et al. in prep). MSATCOMMANDER
1.0.8 [12] was first used to search for the nucleotide repeats
of dinucleotide, trinucleotide, and tetranucleotide with more
than eight repeat units in the draft genome, coupled with
primer design by Primer3 [13] implemented in the soft-
ware. The forward primers were tagged with M 13 sequence
labeled with FAM (5'-GGAAACAGCTATGACCAT-3')
[14]. Next, to determine if the identified loci were polymor-
phic, we mapped the re-sequencing data of the 5 individu-
als to the loci. The raw reads of re-sequencing were first
filtered and adapter-trimmed by Trimmomatic 0.35 [15].
The trimmed reads were mapped onto the draft genome by
BWA-MEM algorithm in Burrows-Wheeler Aligner (BWA
0.7.17) with default settings [16]. The mapping results were
visualized in IGV 2.4.14 [17]. A locus was identified to be
polymorphic if a tandem repeat number variation was found
between the re-sequencing data and the reference genome
for at least one of the 5 individuals. Among the potential
polymorphic loci, 34 loci were randomly selected from the
database with the following criteria: (1) the repeat number
of the short tandem repeat in the reference genome is more
than 8 but less than 20; (2) loci were selected from each class
of repeats evenly (dinucleotide, trinucleotide, and tetranu-
cleotide); (3) Repeats with more than 70% GC content were
avoided (e.g. CG and TGGG); (4) the selected loci are at
different scaffolds of the draft genome; (5) no indel or single
nucleotide polymorphism (SNP) was found in the primer
binding sites based on the whole-genome re-sequencing
mapping; (6) the size of the PCR product is between 100 bp
to 500 bp; and (7) several primer design criteria have to be
fulfilled (e.g. primer GC content around 50%, at least 1-bp
GC clamp at 3’ site of the primers, low levels of self- or pair-
complementarity, etc.; [12, 18]). In addition, three loci from
the Dawson et al. [19] study were also selected for charac-
terization and the primers from that study were modified.

Genotyping PCR was performed in 10 pl reaction vol-
ume containing 1X GoTaq Reaction Buffer, 0.1 pg/ pl BSA,
2 mM MgCl,, 0.2 mM dNTP, 0.01 pM forward primer
tagged with M13R, 0.15 pM reverse primer, 0.15 pM fluo-
rescently labelled M13R primer, 20 ng gDNA and 0.25 unit
GoTaq Polymerase (Promega, US). The cycling conditions
were 1 cycle of 2 min at 95 °C; 20 cycles of 30 s at 95 °C,
30 s at 54-62 °C, 30 s at 72 °C; 20 cycles of 30 s at 95 °C,
30 s at 55 °C, 30 s at 72 °C; 1 cycle of 10 min at 72 °C.
The PCR products were sent to BGI (Shenzhen, China) or
CPOS (Centre for PanorOmic Sciences, The University of
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Hong Kong, HKSAR) for sizing using 3730x]1 DNA Ana-
lyzer (Applied Biosystems) with 500 LIZ Dye Size Standard
(Applied Biosystems). In total, 11 individuals of A. rosei-
collis were genotyped. The same protocol was used for the
cross-species amplification.

Monomorphic loci were excluded from the analysis. The
pairwise relatedness using Lynch & Ritland estimator [20]
was first calculated by GenAlEx 6.5 [21] implemented in
Excel (Microsoft). If the pairwise relatedness (r) between
two individuals were > 0.2, only one of them was included
randomly for downstream analyses. Three pairs of A. rosei-
collis were detected to have r> 0.2 value (Online Resource
2). Two pairs (r=0.479 and 0.521) were known first-order
kins from the local breeders in Hong Kong. Another case
(r=0.3404) was a pair with an unknown relationship, where
both individuals were from the same museum. The loci were
then tested for Hardy-Weinberg equilibrium and linkage dis-
equilibrium using GENEPOP 4.2 [22]. The observed and
expected heterozygosity were calculated. The presence of
null allele, allele dropout and scoring error due to stutter
were checked using MICRO-CHECKER 2.2.3 [23]. To
determine the power of our characterized loci in parentage
analysis, the polymorphic information content (PIC), prob-
ability of exclusions (both parents are unknown, PE1; one
parent is known, PE2), and probability of identity (PI) were
calculated using CERVUS 3.0.7 [24]. The accumulated PE1,
PE2, and PI were also calculated for all possible combina-
tions of loci, excluding those loci with null alleles (p <0.05).
We performed BLASTN against the online Nucleotide col-
lection (nr/nt) database (NCBI) to check whether the scaf-
folds that contain the loci-of-interest are located on the sex
chromosome.

Results and discussion

Using MSATCOMMANDER, 14626 short tandem repeats
(> 8 repeat units) were identified in the draft genome of A.
roseicollis, including 9532 dinucleotides, 1351 trinucleo-
tides, and 3743 tetra-nucleotides. The mapping results of
the whole-genome re-sequencing data allowed us to identify
polymorphic loci for PCR amplification and characteriza-
tion. Out of the 37 selected loci, 29 loci were successfully
amplified and optimized in 11 individuals of A. roseicollis.
Two of the 29 loci were demonstrated to be monomorphic
in our tested samples. This result was inconsistent with the
mapping results, in which the tandem repeat variants of the
mapped individuals were different from the draft genome.
Possible explanations include genotyping errors and map-
ping errors due to low converge re-sequencing data. The
number of alleles for the 27 polymorphic loci ranged from
2 to 7 (mean=3.963; Table 1). The observed heterozygo-
sity ranged from O to 0.875 (mean=0.481) and expected

heterozygosity ranged from 0.233 to 0.842 (mean=0.642).
Loci Agro-Al3 (p<0.01), Agro-Al5 (p < 0.05), Agro-A43
(p < 0.05), Agro-A65 (p <0.05), and Agro-A67 (p <0.05)
were detected to be deviated from Hardy-Weinberg equi-
librium significantly. Eight pairs of loci showed signifi-
cant linkage disequilibrium (Agro-A45 & Agro-A59, Agro-
A07 & Agro-65, Agro-59 & Agro-65, Agro-59 & Agro-67,
Agro-23 & Agro-A73, Agro-A27 & Agro-A73, Agro-A57 &
Agro-A73, and Agro-Al5 & Agro-A75; p<0.05). The devi-
ations from Hardy-Weinberg equilibrium and the linkage
disequilibrium could probably be an artefact as all tested
individuals were likely originated from different popula-
tions (Online Resource 2). Null alleles were significantly
evidenced for the locus Agro-Al3 (p<0.01) and Agro-
A75 (p<0.05) as was indicated by the general excess of
homozygotes for most of the allele classes. The presence
of null alleles at the locus Agro-A13 might also explain its
deviation from Hardy-Weinberg equilibrium. There was no
evidence of sex-linked loci because the scaffolds contain-
ing the loci were not located on the sex chromosome based
on the BLAST results, and neither sex demonstrated only
homozygotes. The presence of null alleles was probably due
to preferential amplification during PCR given that there was
also no evidence of allele dropout (short allele dominance)
or scoring error due to stuttering [23]. After removing the
two loci with null alleles, the remaining 25 polymorphic loci
showed reasonable PIC, ranging from 0.195 (Agro-29) to
0.759 (Agro-A47) with a mean of 0.532. The total exclusion
powers of the 25 loci were 0.997 (PE1) and 0.999 (PE2) with
the total PI of 2.11x 1077 (Fig. 1), which indicates the great
potential of these 25 loci as a tool for parentage and kinship
assignment as well as population genetics study.

The cross-species utility of the 27 polymorphic micro-
satellite loci developed in A. roseicollis was also tested
on another five Agapornis species (i.e. A. personatus, A.
nigrigenis, A. fischeri, A. pullarius, and A. canus) and two
closely-related outgroups (i.e. B. lunulatus and L. galgulus;
Table 2). In ten individuals of A. fischeri, all 27 loci were
shown to be polymorphic with the number of alleles rang-
ing from 2 to 8 (mean=4.52). The observed and expected
heterozygosity were from O to 1 (mean=0.496) and from
0.189 to 0.853 (mean=0.612), respectively. Three loci
(Agro-Al3, p < 0.05; Agro-A51, p<0.01 and; Agro-A79,
p <0.05) showed a significant deviation from Hard-Wein-
berg equilibrium while two pairs of loci (Agro-39 & Agro-57
and Agro-51 & Agro-79; p <0.05) showed a significant link-
age disequilibrium. Similar to A. roseicollis, these deviations
from Hard-Weinberg equilibrium and linkage disequilibrium
could probably result from mixing individuals from different
populations (Online Resource 2). Null alleles were detected
in two loci (Agro-A13 and Agro-A51; p < 0.01) with no evi-
dence of allele dropout (short allele dominance), scoring
error due to stuttering, and sex-linked loci. The presence of
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Fig.1 The probability of exclusions (PE) and probability of identity
(PD) of the 25 microsatellite markers in a Agapornis roseicollis and
b Agapornis fischeri. Loci with the presence of null alleles (Agro-
A13 and Agro-A77 for A. roseicollis; Agro-A13 and Agro-A51 for
A. fischeri) were excluded from the analysis. The accumulated PE
are represented by the blue (both parents are unknown; PE1) and red
(one parent is unknown; PE2) colours. The accumulated PI is rep-
resented by the grey colour. The shadow areas indicate all possible
values of accumulated PE1, PE2, and PI calculated from all combi-
nations of loci with the mean (solid lines) and standard errors (error
bars) shown. The dashed line indicates the log;, values of the mean
of the accumulated PI. The loci at the top is the combination that cor-
responds to the upper limits of the accumulated PE1 and PE2 as well
as the lower limit of the accumulated PI. The two combinations were
arranged from the highest (H) PE1/PE2 to the lowest (L) PE1/PE2 as
indicated by the arrows

null alleles could be due to preferential amplification during
PCR. Excluding the two loci with the presence of null alleles

@ Springer

in A. fischeri, the remaining 25 loci showed comparable PIC
(mean=0.521; from 0.164 to 0.765), total exclusion pow-
ers (PE1 =0.997; PE2=0.999), and total PI (2.61x 10™'7;
Fig. 1) to the values observed in A. roseicollis. These 25
loci originally developed for A. roseicollis could also facili-
tate parentage and kinship assignment as well as population
genetic studies in A. fischeri. Besides, the rate of successful
amplification of all polymorphic 27 loci in the rest of species
varied (A. personatus, 100%; A. nigrigenis, 88.9%; A. pul-
larius, 59.3%; A. canus, 51.9%; B. lunulatus, 37.0%; and L.
galgulus, 29.6%; Table 2). This variation to some extent is
correlated with the phylogenetic relationship between those
species and A. roseicollis (Online Resource 1), with more
closely related species such as those eye-ring species (e.g.
A. fischeri, A. personatus, and A. nigrigenis) had higher suc-
cessful rate.

In conclusion, the 27 novel microsatellite markers devel-
oped here displayed reasonable polymorphism for both A.
roseicollis and probably all eye-ring species such as A. fis-
cheri, A. personatus, and A. nigrigenis. The high exclusion
powers observed in both A. roseicollis and A. fischeri (two
different panels) further indicated that the isolated loci are
useful tools for inferring kinship and parentage in captive
breeding program. Since A. roseicollis, A. fischeri and A.
personatus have the most records of established non-native
populations worldwide and may pose threat to local fauna
[2, 71, the newly developed markers will allow more detailed
investigations into their invasion histories and dispersal pat-
terns, which could further help biosecurity policy develop-
ment. This study will also facilitate the conservation man-
agement of the threatened or near threatened lovebirds in
their native habitats.
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